Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.769
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480613

RESUMEN

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Asunto(s)
Lino , Glucósidos , Lignanos , Lino/química , Lino/metabolismo , Fermentación , Lignanos/farmacología , Lignanos/química , Lignanos/metabolismo , Glicósidos , Butileno Glicoles/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología
2.
BMJ Open Respir Res ; 11(1)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38448045

RESUMEN

BACKGROUND: The role of phytoestrogens in asthma/wheeze and lung function remains controversial. Thus, we aimed to examine whether phytoestrogens have beneficial effects on asthma/wheeze, lung function for subgroups and mortality. METHODS: Participants in this study were individuals aged 20 years or older from the National Health and Nutrition Examination Survey. Multivariate logistic regression models were fitted to examine the associations of urinary phytoestrogens with the risk of asthma/wheeze and lung function in individuals with and without asthma/wheeze. Cox proportional hazards regression was used to examine the relationship between urinary phytoestrogens and all-cause mortality. Stratified analyses were conducted based on gender and smoking status. RESULTS: We included 2465 individuals in this study. Enterolactone levels in the highest quartile were associated with a lower risk of asthma than those in the lowest quartile. As compared with the lowest quartile, the highest quartile of enterodiol and enterolactone was associated with a lower risk of wheeze. Significant associations were observed between subtypes of phytoestrogens (equol and enterolactone) and lung function (forced vital capacity (FVC) and forced expiratory volume in 1 s). Besides, FVC was higher in individuals with higher levels of enterodiol. The results were consistent in subpopulations without asthma/wheeze, while the significant difference was not observed in individuals with asthma/wheeze. The stratified analyses revealed that the associations between phytoestrogens and lung function differed by gender and smoking status among subgroups. No significant association was found between urinary phytoestrogens and all-cause mortality. CONCLUSION: In summary, subtypes of phytoestrogens were associated with lower risk of asthma/wheeze and beneficial for lung function improvement in individuals without asthma/wheeze. Furthermore, gender and smoking may interact in the relationship between phytoestrogens and asthma/wheeze, and lung function. Further researches are needed to confirm these associations and explain the results of stratified analyses.


Asunto(s)
4-Butirolactona/análogos & derivados , Asma , Lignanos , Fitoestrógenos , Humanos , Estudios Transversales , Encuestas Nutricionales , Fumar/epidemiología , Asma/epidemiología , Volumen Espiratorio Forzado , Pulmón
3.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38431110

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Asunto(s)
Lignanos , Compuestos Policíclicos , Schisandra , Receptores de Glicina , Lignanos/farmacología , Dolor , Canales de Calcio Tipo N , Analgésicos/farmacología , Analgésicos/uso terapéutico , Canales de Sodio , Ciclooctanos
4.
J Agric Food Chem ; 72(10): 5133-5144, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427577

RESUMEN

Botanical insecticides are considered an environmentally friendly approach to insect control because they are easily biodegraded and cause less environmental pollution compared to traditional chemical pesticides. In this study, we reported the insecticidal activities of the ingredients from Taiwania flousiana Gaussen (T. flousiana). Five compounds, namely helioxanthin (C1), taiwanin E (C2), taiwanin H (C3), 7,4'-dimethylamentoflavone (C4), and 7,7″-di-O-methylamentoflavone (C5), were isolated and tested against the second, third, and fourth instar larvae of Aedes aegypti. Our results indicated that all five compounds showed insecticidal activities, and helioxanthin, which is an aryltetralin lignan lactone, was the most effective with LC50 values of 0.60, 2.82, and 3.12 mg/L, respectively, 48 h after application, with its activity against the second instar larvae similar to that of pyrethrin and better than that of rotenone. Further studies found that helioxanthin accumulated in the gastric cecum and the midgut and caused swelling of mitochondria with shallow matrices and fewer or disappeared crista. Additionally, our molecular mechanisms studies indicated that the significantly differentially expressed genes (DEGs) were mainly associated with mitochondria and the cuticle, among which the voltage-dependent anion-selective channel (VDAC) gene was the most down-regulated by helioxanthin, and VDAC is the potential target of helioxanthin by binding to specific amino acid residues (His 122 and Glu 147) via hydrogen bonds. We conclude that aryltetralin lignan lactone is a potential class of novel insecticides by targeting VDAC.


Asunto(s)
Aedes , Insecticidas , Lignanos , Animales , Insecticidas/química , Simulación del Acoplamiento Molecular , Lignanos/farmacología , Extractos Vegetales/química , Larva
5.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330236

RESUMEN

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Lignanos , Animales , Ratones , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apoptosis , Cromatografía Liquida , Microbioma Gastrointestinal/efectos de los fármacos , Glucosa/farmacología , Lignanos/farmacología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/metabolismo , Espectrometría de Masas en Tándem
6.
Phytother Res ; 38(4): 1863-1881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358766

RESUMEN

Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Lignanos , Osteólisis , Animales , Femenino , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Lignanos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamente
7.
Zhongguo Zhong Yao Za Zhi ; 49(1): 26-38, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403335

RESUMEN

The 29 plant species in the Kadsura genus of the Schisandraceae family are mainly distributed in eastern and southeas-tern Asia. Ten species of plants in this genus are distributed in China, some of which are folk medicinal plants with activating blood circulation, relieving pain, dispelling wind, and dehumidifying effects. Their main constituents are lignans and triterpenes. The current pharmacology and clinical studies have shown that their extracts and constituents have anti-rheumatoid arthritis, liver protection, antioxidation, anti-inflammatory, and other biological activities. The rheumatologic and liver diseases can also be treated with the plants in the clinic. The new chemical constituents reported in the last decade(2012 to date) from the plants of Kadsura genus in China, as well as their pharmacological effects and clinical applications in recent years were reviewed, so as to provide a theoretical basis for further research on the genus.


Asunto(s)
Medicamentos Herbarios Chinos , Kadsura , Lignanos , Plantas Medicinales , Lignanos/farmacología , Medicamentos Herbarios Chinos/farmacología , China , Extractos Vegetales , Fitoquímicos , Etnofarmacología
8.
Int J Biol Macromol ; 262(Pt 1): 130257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423904

RESUMEN

The genus Schisandra, a member of the Magnoliaceae family, is a well-known tonic traditional Chinese medicine with a long history of traditional medicinal and functional food used in China. Polysaccharides are one of its main active constituents, which have a wide range of bioactivities, such as anti-inflammatory, anti-tumor, neuroprotection, anti-diabetes, hepatoprotection, immunomodulation, and anti-fatigue. In this paper, we review the extraction, isolation, purification, structural characterization, bioactivities, as well as structure-activity relationship of polysaccharides from the genus Schisandra. In conclusion, we hope that this review could provide reference for the subsequent research on structural, bioactivities, development and application of the genus Schisandra polysaccharides.


Asunto(s)
Ciclooctanos , Lignanos , Compuestos Policíclicos , Schisandra , Schisandra/química , Polisacáridos/química , Extractos Vegetales/química , Antioxidantes
9.
Nutrients ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337729

RESUMEN

BACKGROUND: There has been an increasing global prevalence of depression and other psychiatric diseases in recent years. Perceived stress has been proven to be associated with psychiatric and somatic symptoms. Some animal and human studies have suggested that consuming foods abundant in lignans and phytosterols may be associated with lower levels of stress, depression, and anxiety. Still, the evidence is not yet strong enough to draw firm conclusions. Thus, we investigated the association between dietary intake of these phytochemicals and the level of stress experienced by adult individuals. METHODS: Diet was assessed using self-reported 7-day dietary records. The intakes of lignans and phytosterols were estimated using databases with their content in various food products. The Perceived Stress Scale (PSS) was implemented to measure the level of perceived stress. A logistic regression analysis was used to test for associations. RESULTS: The odds of elevated PSS were negatively associated with dietary intake of total phytosterols, stigmasterol, and ß-sitosterol, with evidence of a decreasing trend across tertiles of phytochemicals. The analysis for doubling the intake reinforced the aforementioned relationships and found protective effects against PSS for total lignans, pinoresinol, and campesterol. CONCLUSIONS: Habitual inclusion of lignans and phytosterols in the diet may play a role in psychological health. To address the global outbreak of depression and other mental health issues triggered by stress, it is important to take a holistic approach. There is a need to develop effective strategies for prevention and treatment, among which certain dietary interventions such as consumption of products abundant in lignans and phytosterols may play a substantial role.


Asunto(s)
COVID-19 , Lignanos , Fitosteroles , Pruebas Psicológicas , Autoinforme , Humanos , Adulto Joven , Polonia , Pandemias , COVID-19/epidemiología , Fitosteroles/análisis , Dieta , Percepción
10.
J Nat Prod ; 87(2): 340-348, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38354299

RESUMEN

Norlignans are a rare class of natural products isolated from a diverse range of plant species, many of which have interesting biological activities including antibacterial, antioxidant, phytotoxic, platelet aggregation inhibitory effects, and more. Isolated from Amomum villosum (Amomi Fructus), amovillosumins A (1) and C (3) are norlignans which were of interest to synthesize, due to their interesting bioactivities, specifically their ability to increase stimulation of glucagon-like peptide-1 (GLP-1) secretion. In this research, key intermediate 15 was used to stereoselectively synthesize (7R,8R)-amovillosumins A (1) and C (3). The developed method includes a Mitsunobu coupling, a modified rhodium-catalyzed Miyaura arylation, and an acid-catalyzed cyclization in key bond-forming steps. After synthesis, the structure of 1 was confirmed, but it was revealed that the benzodioxane-containing structure of amovillosumin C (3) that had been proposed in the literature was incorrect. Thus, with further investigation a structure correction of 3 was achieved by synthesis, the correct structure being 8-O-4'-oxynorlignan.


Asunto(s)
Productos Biológicos , Medicamentos Herbarios Chinos , Lignanos , Zingiberaceae , Productos Biológicos/análisis , Ciclización , Medicamentos Herbarios Chinos/química , Frutas/química , Lignanos/química , Estructura Molecular , Zingiberaceae/química
11.
Int J Pharm ; 653: 123878, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325622

RESUMEN

Dysfunction of the mucosal barrier as well as local inflammation are major challenges in the treatment of ulcerative colitis (UC). Mag, a natural compound derived from traditional Chinese medicine, has been shown to have anti-inflammatory and mucosal protection properties. However, its poor gastrointestinal stability as well as its insufficient accumulation in inflamed colonic lesions limit its potential use as an alternative therapeutic drug in UC. The present research involved the design and preparation of a hybrid nanoparticle system (LPNs) specifically targeting macrophages at the colonic site. This was achieved by electrostatically adsorbing HA onto positively charged lipid-polymer hybrid nanoparticles (HA-LPNs). The prepared HA-LPNs exhibited a rounded morphology and a narrow size distribution. In vitro, the anti-inflammatory efficacy of Mag-HA-LPNs (which control levels of the pro-inflammatory cytokines NO, IL-6 and TNF-α) was assessed in RAW 264.7 cells. Analysis by flow cytometry and fluorescence microscopy demonstrated increased cellular uptake through HA/CD44 interaction. As expected, Mag-HA-LPNs was found to effectively increased colon length and reduced DAI scores in DSS-treated mice. This effect was achieved by regulating the inflammatory cytokines level and promoting the restoration of the colonic mucosal barrier through increased expression of Claudin-1, ZO-1 and Occludin. In this study, we developed an efficient and user-friendly delivery method for the preparation of HA-functionalized PLGA nanoparticles, which are intended for oral delivery of Mag. The findings suggest that these HA-LPNs possess the potential to serve as a promising approach for direct drug delivery to the colon for effective treatment of UC.


Asunto(s)
Compuestos de Bifenilo , Colitis Ulcerosa , Colitis , Lignanos , Nanopartículas , Compuestos de Amonio Cuaternario , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Ácido Hialurónico , Colon/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Colitis/tratamiento farmacológico , Sulfato de Dextran , Ratones Endogámicos C57BL
12.
Chem Biol Interact ; 391: 110906, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340974

RESUMEN

Wuzhi capsule (WZC), a commonly used Chinese patent medicine to treat various types of liver dysfunction in China, increases the exposure of tacrolimus (TAC) in liver transplant recipients. However, this interaction has inter-individual variability, and the underlying mechanism remains unclear. Current research indicates that CYP3A4/5 and drug transporters influence the disposal of both drugs. This study aims to evaluate the association between TAC dose-adjusted trough concentration (C/D) and specific genetic polymorphisms of CYP3A4/5, drug transporters and pregnane x receptor (PXR), and plasma levels of major WZC components, deoxyschisandrin and γ-schisandrin, in liver transplant patients receiving both TAC and WZC. Liquid chromatography-tandem-mass spectrometry was used to detect the plasma levels of deoxyschisandrin and γ-schisandrin, and nine polymorphisms related to metabolic enzymes, transporters and PXR were genotyped by sequencing. A linear mixed model was utilized to assess the impact of the interaction between genetic variations and WZC components on TAC lnC/D. Our results indicate a significant association of TAC lnC/D with the plasma levels of deoxyschisandrin and γ-schisandrin. Univariate analysis demonstrated three polymorphisms in the genes ABCB1 (rs2032582), ABCC2 (rs2273697), ABCC2 (rs3740066), and PXR (rs3842689) interact with both deoxyschisandrin and γ-schisandrin, influencing the TAC lnC/D. In multiple regression model analysis, the interactions between deoxyschisandrin and both ABCB1 (rs2032582) and ABCC2 (rs3740066), post-operative day (ß < 0.001, p < 0.001), proton pump inhibitor use (ß = -0.152, p = 0.008), body mass index (ß = 0.057, p < 0.001), and ABCC2 (rs717620, ß = -0.563, p = 0.041), were identified as significant factors of TAC lnC/D, accounting for 47.89% of the inter-individual variation. In summary, this study elucidates the influence of the interaction between ABCB1 and ABCC2 polymorphisms with WZC on TAC lnC/D. These findings offer a scientific basis for their clinical interaction, potentially aiding in the individualized management of TAC therapy in liver transplant patients.


Asunto(s)
Ciclooctanos , Medicamentos Herbarios Chinos , Trasplante de Riñón , Lignanos , Trasplante de Hígado , Compuestos Policíclicos , Humanos , Tacrolimus/uso terapéutico , Inmunosupresores/uso terapéutico , Citocromo P-450 CYP3A/genética , Polimorfismo Genético , Genotipo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Interacciones Farmacológicas , Polimorfismo de Nucleótido Simple
13.
Phytomedicine ; 126: 155372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382281

RESUMEN

BACKGROUND: Renal fibrosis is a common pathway that drives the advancement of numerous kidney maladies towards end-stage kidney disease (ESKD). Suppressing renal fibrosis holds paramount clinical importance in forestalling or retarding the transition of chronic kidney diseases (CKD) to renal failure. Schisandrin A (Sch A) possesses renoprotective effect in acute kidney injury (AKI), but its effects on renal fibrosis and underlying mechanism(s) have not been studied. STUDY DESIGN: Serum biochemical analysis, histological staining, and expression levels of related proteins were used to assess the effect of PKCß knockdown on renal fibrosis progression. Untargeted metabolomics was used to assess the effect of PKCß knockdown on serum metabolites. Unilateral Ureteral Obstruction (UUO) model and TGF-ß induced HK-2 cells and NIH-3T3 cells were used to evaluate the effect of Schisandrin A (Sch A) on renal fibrosis. PKCß overexpressed NIH-3T3 cells were used to verify the possible mechanism of Sch A. RESULTS: PKCß was upregulated in the UUO model. Knockdown of PKCß mitigated the progression of renal fibrosis by ameliorating perturbations in serum metabolites and curbing oxidative stress. Sch A alleviated renal fibrosis by downregulating the expression of PKCß in kidney. Treatment with Sch A significantly attenuated the upregulated proteins levels of FN, COL-I, PKCß, Vimentin and α-SMA in UUO mice. Moreover, Sch A exhibited a beneficial impact on markers associated with oxidative stress, including MDA, SOD, and GSH-Px. Overexpression of PKCß was found to counteract the renoprotective efficacy of Sch A in vitro. CONCLUSION: Sch A alleviates renal fibrosis by inhibiting PKCß and attenuating oxidative stress.


Asunto(s)
Ciclooctanos , Enfermedades Renales , Lignanos , Compuestos Policíclicos , Obstrucción Ureteral , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Enfermedades Renales/tratamiento farmacológico , Riñón , Fibrosis , Obstrucción Ureteral/patología , Estrés Oxidativo
14.
Planta ; 259(3): 59, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311641

RESUMEN

MAIN CONCLUSION: The composition, diversity and co-occurrence patterns of the rhizosphere microbiota of E. ulmoides were significantly influenced by environmental factors, and which were potentially associated with the contents of pharmacological active ingredients. Eucommia ulmoides is an important perennial medicinal plant. However, little is known about the interactions among microbiota, environmental factors (EFs), and pharmacological active ingredients (PAIs) of E. ulmoides. Herein, we analyzed the interactions among rhizosphere microbiota-EFs-PAIs of E. ulmoides by amplicon sequencing and multi-analytical approach. Our results revealed variations in the dominant genera, diversity, and co-occurrence networks of the rhizosphere microbiota of E. ulmoides across different geographical locations. Notably, available nitrogen exerted the strongest influence on fungal dominant genera, while pH significantly impacted bacterial dominant genera. Rainfall and relative humidity exhibited pronounced effects on the α-diversity of fungal groups, whereas available phosphorus influenced the number of nodes in fungal co-occurrence networks. Altitude and total phosphorus had substantial effects on the average degree and nodes in bacterial co-occurrence networks. Furthermore, the dominant genera, diversity and co-occurrence network of rhizosphere microbiota of E. ulmoides were significantly correlated with the content of PAIs. Specifically, the abundance of rhizosphere dominant genera Filobasidium, Hannaella and Nitrospira were significantly correlated with the content of pinoresinol diglucoside (PD). Similarly, the abundance of Vishniacozyma and Bradyrhizobium correlated significantly with the content of geniposidic acid (GC), while the abundance of Gemmatimonas was significantly correlated with the content of aucubin. Moreover, the bacterial co-occurrence network parameters including average degree, density, and edge, were significantly correlated with the content of GC and aucubin. The α-diversity index Chao1 also displayed a significant correlation with the content of PD. These findings contribute to a more comprehensive understanding of the interactions between medicinal plants and microbes.


Asunto(s)
Eucommiaceae , Glucósidos Iridoides , Lignanos , Microbiota , Plantas Medicinales , Rizosfera , Eucommiaceae/química , Bacterias/genética , Fósforo , Microbiología del Suelo , Suelo
15.
Phytomedicine ; 126: 155348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335913

RESUMEN

BACKGROUND: (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS: A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS: Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION: Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.


Asunto(s)
Dioxoles , Lignanos , Lesiones Precancerosas , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Lignanos/farmacología , Proliferación Celular , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , Apoptosis , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral
16.
J Membr Biol ; 257(1-2): 107-114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285126

RESUMEN

Osteoarthritis is a common joint disease characterized by damage to the joint cartilage that occurs throughout the entire joint tissue. This damage primarily manifests as pain in the affected area. In clinical practice, medication is commonly used to relieve pain, but the treatment's effectiveness is poor and recurrent attacks are likely. Schisandrin B is the most abundant biphenylcyclohexene lignan found in the traditional Chinese medicine Schisandra chinensis, and it possesses various pharmacological effects. This study aims to investigate the protective effect of Schisandrin B on mitochondrial damage in osteoarthritis (C28I2 cells) under an inflammatory environment induced by LPS. Cell proliferation and activity, scratch tests, and LDH release tests are utilized to assess cell growth and migration ability. The immunofluorescence assay was used to detect the expression levels of proliferation and apoptosis proteins. The Western Blot assay was used to detect the expression levels of mitochondrial fusion and division proteins. The JC-1 assay was used to detect changes in mitochondrial membrane potential. The mitochondrial fluorescence probe assay was used to detect mitochondrial activity. Through research, it was found that Schisandrin B promotes the proliferation, growth, and migration of C28I2 cells, reduces apoptosis of C28I2 cells, balances mitochondrial fusion and division, stabilizes mitochondrial membrane potential, and promotes mitochondrial activity in an LPS induced inflammatory environment.


Asunto(s)
Lignanos , Osteoartritis , Compuestos Policíclicos , Humanos , Lipopolisacáridos , Lignanos/farmacología , Dolor , Ciclooctanos
17.
Poult Sci ; 103(3): 103378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228060

RESUMEN

As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has emerged as a major cause of noninfectious mortality in laying hens, resulting in substantial economic losses to the poultry industry. This study aimed to investigate the therapeutic effects of magnolol on FLHS in postpeak laying hen model, focusing on lipid metabolism, antioxidative capacity, and potential molecular mechanisms of action. We selected 150 Xinhua laying hens aged 50 wk and divided them into normal diet group (ND), high-fat diet group (HFD), 100 mg/kg magnolol group (MG100), 300 mg/kg magnolol group (MG300), 500 mg/kg magnolol group (MG500) on average. The experiment lasted for 6 wk, and liver samples were collected from the hens at the end of the experiment. The results demonstrated that the inclusion of magnolol in the diet had a significant impact on various factors. It led to a reduction in weight, an increase in egg production rate, a decrease in blood lipid levels, and an improvement in abnormal liver function, liver steatosis, and oxidative stress. These effects were particularly prominent in the MG500 group. The RNA-Seq analysis demonstrated that in the MG500 group, there was a down-regulation of genes associated with fatty acid synthesis (Acc, Fasn, Scd, Srebf1, Elovl6) compared to the HFD group. Moreover, genes related to fatty acid oxidation (CPT1A and PGC1α) were found to be up-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these differentially expressed genes indicated their enrichment in the PPAR signaling pathway. These findings demonstrate that magnolol can mitigate FLHS by inhibiting fatty acid synthesis and promoting fatty acid oxidation. This discovery offers a novel approach for treating FLHS in laying hens, reducing the economic losses associate with FLHS.


Asunto(s)
Anomalías Múltiples , Compuestos de Bifenilo , Pollos , Anomalías Craneofaciales , Hígado Graso , Trastornos del Crecimiento , Defectos del Tabique Interventricular , Lignanos , Animales , Femenino , Metabolismo de los Lípidos , Hígado Graso/tratamiento farmacológico , Hígado Graso/veterinaria , Suplementos Dietéticos , Ácidos Grasos
18.
Biosci Biotechnol Biochem ; 88(3): 270-275, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38169014

RESUMEN

Secondary metabolites are specialized metabolic products synthesized by plants, insects, and bacteria, some of which exhibit significant physiological activities against other organisms. Plants containing bioactive secondary metabolites have been used in traditional medicine for centuries. In developed countries, one-fourth of medicines directly contain plant-derived compounds or indirectly contain them via semi-synthesis. These compounds have contributed considerably to the development of not only medicine but also molecular biology. Moreover, the biosynthesis of these physiologically active secondary metabolites has attracted substantial interest and has been extensively studied. However, in many cases, the degradation mechanisms of these secondary metabolites remain unclear. In this review, some unique microbial degradation pathways for lignans and C-glycosides are explored.


Asunto(s)
Bacterias , Hongos , Glicósidos , Lignanos , Lignanos/metabolismo , Glicósidos/metabolismo , Bacterias/metabolismo , Redes y Vías Metabólicas , Hongos/metabolismo
19.
Int Immunopharmacol ; 128: 111472, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176342

RESUMEN

Schizandrin A (SA), also known as deoxyschizandrin, is one of the most biologically active lignans isolated from the traditional Chinese medicine Fructus schisandrae chinensis. Schisandrin A has proven benefits for anti-cancer, anti-inflammation, hepatoprotection, anti-oxidation, neuroprotection, anti-diabetes. But the influence of Schisandrin A to the innate immune response and its molecular mechanisms remain obscure. In this study, we found that Schisandrin A increased resistance to not only the Gram-negative pathogens Pseudomonas aeruginosa and Salmonella enterica but also the Gram-positive pathogen Listeria monocytogenes. Meanwhile, Schisandrin A protected the animals from the infection by enhancing the tolerance to the pathogens infection rather than by reducing the bacterial burden. Through the screening of the conserved immune pathways in Caenorhabditis elegans, we found that Schisandrin A enhanced innate immunity via p38 MAPK pathway. Furthermore, Schisandrin A increased the expression of antibacterial peptide genes, such as K08D8.5, lys-2, F35E12.5, T24B8.5, and C32H11.12 by activation PMK-1/p38 MAPK. Importantly, Schisandrin A-treated mice also enhanced resistance to P. aeruginosa PA14 infection and significantly increased the levels of active PMK-1. Thus, promoted PMK-1/p38 MAPK-mediated innate immunity by Schisandrin A is conserved from worms to mammals. Our work provides a conserved mechanism by which Schisandrin A enhances innate immune response and boosts its therapeutic application in the treatment of infectious diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Ciclooctanos , Lignanos , Compuestos Policíclicos , Animales , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Inmunidad Innata , Mamíferos
20.
Biomed Pharmacother ; 171: 116107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215692

RESUMEN

Recent studies have shown that the combined use of renin angiotensin system inhibitor, SGLT2 inhibitors and/or mineralocorticoid receptor antagonist provides additional renal protection for patients with diabetic kidney disease (DKD). Similarly, in traditional Chinese medicine, the synergistic application of multiple herbs often brings more significant therapeutic effects. However, the synergistic or additive mechanisms of traditional Chinese medicine in combination therapy are not fully understood. In our previous studies, we show that arctigenin (ATG), a major component of Fructus Arctii, attenuates proteinuria and renal injury in diabetic mice by activating PP2A, and puerarin (a class of known isoflavones) can also reduce proteinuria and renal injury in diabetic mice via activation of Sirt1. Here, we further explored the potential additive renal protection of these two compounds in diabetic mice. Research has found that ATG and puerarin have a synergistic effect in reducing albuminuria in db/db mice. Mechanistically, we found that ATG reduced NF-κB p65 phosphorylation likely through activation of PP2A while puerarin reduced p65 acetylation via Sirt1 activation. Therefore, ATG and puerarin have additive inhibitory effects on the NF-κB activation, which is a key inflammatory pathway in DKD. RNA-sequencing analysis revealed distinct pathways activated by ATG and puerarin in the diabetic kidney, which may provide an additional mechanism for their additive effects in DKD. Our study suggests that ATG and puerarin could be a new combination therapy for DKD and reveals its underlined mechanisms.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Furanos , Isoflavonas , Lignanos , Humanos , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Sirtuina 1/metabolismo , FN-kappa B/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Riñón , Isoflavonas/farmacología , Proteinuria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA